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Abstract

Channel estimation in wireless communication
systems is usually accomplished by inserting, along
with the information, a series of known symbols, whose
analysis is used to define the parameters used by filters
that remove the distortion of the data. Nevertheless,
a part of the available bandwidth has to be used by
these symbols. Until now, no alternative solution has
demonstrated to be fully satisfying for commercial use,
but one technique that looks promising is superimposed
training (ST). This work describes a hybrid software-
hardware FPGA implementation of a recent algorithm
that belongs to the ST family, known as Data-dependent
Superimposed Training (DDST), which does not need
extra bandwidth for its training sequences (TS) as it
adds them arithmetically to the data. DDST also adds a
third sequence known as data-dependent sequence, that
destroys the interference caused by the data over the
TS. As DDST’s computational burden is to high for the
commercial processors used in mobile systems, a SOPC
(System on a Programmable Chip) approach is used in
order to solve the problem.
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1 Introduction

The air is inherently noisy and its nature can contribute
to the presence of different kinds of interference, as the
one known as Intersymbol Interference or ISI, in which
the energy of the message symbols is spread in such
way that a part of each symbol overlaps with that of
the neighboring symbols. The ISI can, in fact, make
almost impossible to the detector inside the receiver to
differentiate between a symbol and the spread energy
of consecutive ones. Nevertheless, this channel can be
modeled as a linear system, whose effects can be reverted
in the receiver, if one knows its parameters with enough
precision.

To obtain these parameters, the majority of the
wireless communication systems use sequences of known
symbols (training sequences) that, after a certain analysis,
allow the estimation of the channel. Once this is done, the
original information can be extracted, using well known
techniques for data recovery.

The most extended technique to integrate the training
sequences to the information is known as time-division
multiplexed channel estimation or time multiplexed
training where some of the transmission slots are used for
the pilots or training symbols [1]. The performance of
this approach is very high, but it has the disadvantage of
needing part of the available bandwidth to accommodate
the extra data.

Even though several options have been proposed, none
of them has demonstrated to be more feasible than the
usual training.

One of the most promising techniques that has not yet
been implemented physically is Superimposed Training
(ST), where the training sequence is arithmeticly added to
the information, saving the necessity of more bandwidth
at the expense of a little power loss on the information
signal [2], [3].

The method named Data-dependent Superimposed
Training goes beyond ST adding another sequence (the
data-dependent training sequence) to the information.
When estimating the channel, what is analyzed is the
training sequence so, from this point of view, the original
data can be considered additive noise that distorts the
object of study. The data-dependent sequence cancels
the contribution of the input signal at the frequency bins
where the training sequence has energy, improving the
channel estimates over ST [4].

The problem with DDST, talking about its possible
implementation, is its high computational complexity, that
renders the commercial mobile and low power demanding
processors useless for this purpose, at least taking into
account the speeds demanded by the systems in which it
could be used.

This work will describe a combined
software/hardware implementation of the DDST
algorithm using a SOPC approach, highlighting the
most challenging issues that have arisen, and the way in
which they have been tackled.



2 DDST Algorithm Review

Figure 1 shows a general block diagram of a digital
communication receiver based on DDST.

Figure 1. DDST general block diagram

Before describing each block, it is important to note
that they cannot be executed in a parallel fashion, that is,
to start each block processing, it is absolutely necessary
that all the previous stages have already finished their own
function. The lines with the arrow markers indicate from
where each block receives its input and to where it feeds
its output.

It is also important to mention that the DC-offset,
along with the two synchronization steps and the channel
estimation itself exploit the cyclostationarity that is
induced in the transmitted signal when superimposed
training is employed [2], [3].

This work does not focuses on the mathematical
meaning of the formulas used to solve the different
steps of the DDST approach, but in the computational
burden that they present and in the procedure followed to
implement them in the system.

2.1 Input Buffer

To begin with the steps of the algorithm, it is necessary
to store the input data samples as they are being received,
because it is not possible to correct them ”on the fly“. As
shown in figure 1, the input data samples are corrected
several times as the different stages of the DDST channel
estimation are fulfilled.

Before going further into the process, it is fair
to mention that all data samples are complex valued
quantities, so all operations performed in the following
steps involve the computation of both a real and an
imaginary part of several numbers.

2.2 DC-offset estimation and correction

Practical systems commonly face a physical problem
resulting from the building techniques used: their output,
seen as voltage levels, presents an unwanted constant
value that is added to the expected signal. Even though
this value is almost always very small, it must be
considered as the method works with first order statistics
[2].

This block involves the reshaping of a vector formed
by an N size subset of the original input data into a matrix
of size ‖P x (N/P )‖, whose rows are then summed to
form a vector of length P. Each element of the vector is
then multiplied by 1/(N/P) so, in fact, each element of the
output vector corresponds to the arithmetic mean of each
of the rows of the matrix mentioned above.

Once this vector has been obtained, the process
reaches an iterative phase that involves matrix
multiplications, norm of a vector (the square root of
the sum of the squares of the real and imaginary parts of
each element of the vector) several other multiplications,
and a division. All of these operations have a high
computational complexity, where the square root and the
matrix multiplication are the more challenging. Once the
DC-offset has been obtained, it is removed from the input
data by simply subtracting it from each input element.

2.3 Carry Frequency Offset estimation
and correction

Due to the lack of perfect oscillators and because of
Doppler shifts, receivers in practical pass-band systems
always experiment a carry frequency offset [6]. Among
the mathematical operations found in a DDST based
digital communications receiver, CFO estimation has the
more complex of all, both in time and resource usage.
This block requires several summations, Fast Fourier
Transforms and vector norms, but even these operations
result insignificant when compared with the real problem
of this stage: to obtain a CFO estimate, a simulation
run, for example, needed to calculate 36864 complex
exponentials. If they are solved using the Euler’s Formula,
73728 trigonometric operations have to be performed.

As the CFO estimation is an iterative process, the
complexity is not the only problem, because low data
resolutions lead to fast growing errors, that in the end
can result in a very inaccurate estimate. Once this
process is complete, the CFO is removed from the input
data by multiplying each input sample by one complex
exponential term.

2.4 Training Sequence Synchronization
Estimation

In practical applications, it is usually impossible to
suppose a perfect synchronization between the transmitter
and the receiver at the training sequence level, so channel
estimation must consider this issue.



When there is no perfect synchronization, the estimate
is just a circular shifted version of the real channel
estimation that would have been obtained under ideal
conditions. Using the ciclostationarity of the signal,
one of the possible permutations in the circular array is
equal to the estimate supposing perfect synchronization,
so the problem is reduced to obtain the knowledge of the
correct permutation. Mathematical operations in this stage
are almost identical to those performed for the dc-offset
estimation [5].

2.5 Block Synchronization Estimation

As with training sequence estimation, block
synchronization is also based on the particular structure
of the channel output’s cyclic mean vector, and can be
achieved even in the presence of a DC-offset. Due to
its special characteristics, in DDST it is not enough to
locate the start of a training sequence period, because
it is also necessary to find the start of each received
block. Only the vector encompassing a full DDST block
will provide a cyclostationary mean vector independent
from the data sequence, with a reduced “data” noise
compared to the rest of the estimates. This procedure
is achieved through a specific cost function, that will
give a minimum value only with the right version of
the cyclostationary mean vector [5]. Even though this
block is in concept very different from the Training
Sequence Synchronization estimation, the necessary
operations for the Block Synchronization Estimation also
include matrix multiplications, norm of a vector and other
multiplications.

2.6 Channel Estimation

Once the two synchronization estimations have been
obtained, the channel estimation stage can be tackled with
very similar operations to those that have already been
used. In fact, this easy step only needs a vector reshape,
the mentioned vector obtained from the arithmetic mean
of that reshaped matrix, and a matrix multiplication. At
the end we obtain a vector whose complex elements
correspond to the values of each tap of the estimated
channel.

3 DDST and its hardware implementation

At this point, it can be inferred that the difficulty
for implementing the algorithm in hardware is caused
by two main reasons: the complexity of the operations
(square root and trigonometric functions are far from an
optimal hardware solution) and the amount of data that
is used, transformed and updated constantly. The first
of these issues leads to the generation of huge hardware
components, that usually need several multipliers, units
that are scarce in mid-range FPGAs. The second one
requires a very complex control unit and the need of a
high amount of memory accesses.

Moreover, the huge amount of data dependencies
makes it very difficult to use techniques such as parallel
processing and pipeline implementation. Even in those
few cases when they are possible, its performance gain
versus a software only implementation is small, and they
usually require a considerable FPGA area.

This implementation tackles the problem by using
a hybrid software/hardware approach. A set of C
language programs running over a NIOS II soft processor
spare the need of a complex control, while dedicated
hardware coprocessors perform the most time and
resource demanding operations (like the FFTs), also
allowing operations with non-standard data lengths (48
bits, for example) that are hidden to the C programs of
the system, making easier to control, modify and extend
the software section of the SOPC.

4 Hardware Architecture

Figure 2 depicts the DDST hardware architecture.
It has been designed to run in an Altera Stratix II
FPGA as a NIOS II controlled system. As it can
be seen, the architecture resembles that of a common
computer system, with the difference that it presents
several dedicated memories for fast data fetching and
processing, and a set of special hardware accelerators that
interact directly with the rest of the system. The processor
only passes them certain parameters and activates them
(through the use of their slave ports), but they execute
its processing in a stand alone fashion. This means
that they can read and write, using the master ports,
all the memories in the system (although they almost
always interact with the dedicated ones) and, while one
of them is working, neither the processor nor do the other
accelerators need to be interrupted. The control for no
resource competition is performed by the software section
of the system.

4.1 NIOS II Soft-core Embedded
Processor

The NIOS II from Altera is a soft-core microprocessor
that, for the DDST implementation, presents several
advantages, like its low power consumption and its small
required FPGA area, along with its easiness for interacting
with custom hardware accelerator modules.

4.2 Dedicated On-chip Memories

The on-chip memories are structures that allow the
transparent management and use of the memory blocks
contained inside the FPGAs. They have the smallest
latency (1) of all the available memories in the Altera
boards. Low latency reduces the number of cycles needed
to obtain, operate, and store a datum or a group of them.
Fixed latency means that the system does not need to
access the memory sequentially to achieve the highest
throughput.



Figure 2. Hardware Architecture of the system

In the Altera NIOS II IDE, on-chip memories can be
used as if they were part of the general data memory by
just using a pointer to its assigned address, inside a typical
C language program, that then will be compiled for the
soft processor architecture.

Dedicated memories DataRAM1, DataRAM2,
CosRAM, and SinRAM are used by the FFT accelerator,
while the N Samples Buffer and Y are accessed by the
other two coprocessors. The NIOS II can access all of
them.

4.3 Interconnet Fabric

Contrary to the majority of Systems on a Chip
and common computer systems, Altera does not use a
conventional bus scheme. Their systems feature a switch
interconnect fabric which bypasses bus contention in most
applications and gives a higher-performance pipe between
processors and peripherals. This improves the DDST
implementation execution time and prevents the necessity
of extra control in both the software and hardware parts of
the SOPC.

4.4 FFT Accelerator

The FFT coprocessor is based on an original design of
Altera that uses a tool named C2H to convert C language
instructions to hardware elements directly. There are other
options (to use an IP core or a custom hardware design)
that can achieve a better performance than this solution,
but it shows an interesting possibility of the system being
built: if the DDST algorithm is modified to have better

Figure 3. Arithmetic mean hardware accelerator.

performance or to reduce the computational complexity
of some step, it is possible to implement such change
in the architecture by just modifying some lines of code
in a C program, instead of redesigning a full hardware
accelerator. As it is, the FFT coprocessor executes its
function with acceptable speed and area consumption.

4.5 Arithmetic Mean Accelerator

As mentioned in section 2, an operation that is
performed constantly along the DDST execution is the
vector reshape, followed by the arithmetic mean of the
rows of the resulting matrix. This implies several memory
accesses and a series of summations and divisions. At the
end, the result is a vector of P elements, where P is the
length of the training sequence.

This coprocessor, whose block diagram is shown in
figure 3, performs the summations over the vector to
reshape in parallel, sending the result to a dedicated
memory that corresponds to the vector of P elements. In
this way the step of the reshaping can be bypassed and the
execution time is reduced considerably.

As P is a parameter that has to be known before
computing, then its inverse can also be previously known
and the P necessary divisions can be performed as
multiplications, accelerating the process a little more.

Summarizing, this coprocessor reads directly from the
N samples buffer dedicated on-chip memory, P data, each
one of 32 bits , accumulating their respective values to P
32 bits wide registers. At the end of the process, they are
multiplied by 1/(N/P), so now they contain the arithmetic
means of the rows from the reshaped matrix. Finally, the
results are stored in another on-chip memory.

As it will be seen in the results section, this accelerator
outperforms a software only version by more than 30
times, giving also an smaller error as it works with higher
resolutions during the multiplication stage.

4.6 Norm or Magnitude Accelerator

The norm of a complex number a+bi, is calculated as
in (1) and it represents the magnitude of that number.√

a2 + b2 (1)



The computational burden of this operation is high, as
it does not only need to multiply the real and imaginary
part by themselves, but also to obtain a square root. This
last operation is difficult to implement with the required
speed both in software and hardware, and the algorithms
used are iterative and involve the use of multiplications,
substractions and comparisons.

This problem is solved by using an accelerator that
has several advantages over the software-only version: it
fetches both the real and the imaginary part of the FFT
elements each time it performs a read operation; it works
with 64 bit arithmetic, so there is no loss in the accuracy
of the result. Moreover, it accumulates the calculated
magnitudes as it works, so at the end of the process we will
have the summation of all of them, a parameter needed
for the iterative part of the CFO block. Figure 4 shows
the block diagram of the accelerator. The operation of the
square root block will be explained later.

Figure 4. Magnitude hardware accelerator module

As it can be seen, it is possible to send to the N
Samples Buffer the result of each of the magnitudes
as they are obtained, or their total summation. These
decisions are fed to the module by the software program,
along with the address of the memory and the amount
of complex numbers to process (1024 numbers resulting
from the FFT, for example).

4.6.1 Square root hardware submodule

The square root is solved by a submodule with
an operation based on the non-restoring algorithm
implementation like the one of [7], but with two main
differences: first, the 8 more significant bits of the root are
obtained from a look-up table. This could be considered
an approximated root, that then can be fine tunned. For
example, the square root of 5 is ≈ 2.236. The look-up
table would give a value of 2, so only the decimal part of
the result has to be calculated. This increases drasticly the
speed of the coprocessor while still using very little FPGA
area. Second, each iteration calculates, in parallel, 4 bits
of the root, and not only one. This system is depicted in
figure 5.

The approximated root is obtained from the look-
up table using as index the most significant bits of the
radicand. Then this value is appended to a set of possible
roots that are squared and compared to the original
radicand. A comparator tree evaluates all the results and

decides which of the possible roots gave the smallest error.
This value is then updated as the new approximated root
and the next four bits are calculated. With each iteration,
the approximated root of the possible set of roots grows
four bits, until it reaches the least significant bit.

Another advantage of the coprocessor is that it stops its
operation as soon as it finds an exact root of an introduced
number, so not all entries take the same amount of cycles
to be calculated. For example, if we try to find the root
of 14.0625, the process will stop as soon as it realizes that
3.75 is its exact square root (on the first iteration), even
if the original number is represented as a 64 bits array,
that usually requires 6 iterations for full resolution or 5
iterations for a maximum error of ≈ 7.15x10−7.

5 Results

The hybrid architecture was compared against an
optimized software-only version of the DDST algorithm
implementation. The system for this non-hardware
implementation is very similar to the accelerated version,
but it does not have the coprocessors or the dedicated on-
chip memories.

Both systems were tested with a set of 3765 complex
data, with 32 bits for the real and imaginary part,
respectively. In fact, lower resolutions (16 bits for
example) degrade the performance so drasticly that the
obtained results are far to different from the expected
ones (obtained from a Matlab simulation using double
precision float data). Execution time was measured using
the Altera module performance counter, that physically
times a group of code lines and outputs both seconds
consumed and cycles taken for the operation to finish.

Table 1 shows an abstract of the synthesis report for
the software-only and hybrid systems. Space percentages
refer to an estimate that the synthesizer makes according
to the total available resources. The equal frequencies are
expected as all the coprocessors run at higher speeds than
the NIOS II, which determines the maximum performance
of both designs. Because of the large amount of performed
multiplications along the algorithm, it can be seen that the
total of DSP blocks are used by the hardware accelerated
implementation.

Implementation Software Hardware
Max. Frequency 238.72MHz 238.72MHz

Space (Total) 29% 68%
ALUTs 15% 60%

Registers 13% 24%
DSP Blocks 10% 100%

Table 1. Synthesis Summary

On the other hand, table 2 reports the time and cycles
taken to complete some specific operations in the software
program and its hybrid architecture counterpart.



Figure 5. Square root submodule

Implementation
Operation Software only Hardware accelerated

cycles time [ms] cycles time [ms]

Performance
increment

Vector reshape and arithmetic mean 74824 0.75 2238 0.02 37.5x
1024 points FFT 1591929 15.92 56743 0.57 27.92x

Norm of all the output data from the FFT 3144061 31.44 138511 1.39 22.61x
CFO iterative process 354248859 3.54249 319750003 3.1975 1.1x

Table 2. Comparisons between software-only and hardware optimized operations

All of the arithmetic and manipulation operations
of the accelerated SOPC outperform their software-only
version, not only in speed, but also in precision, thanks
to the non standard data lengths that are used in the
intermediate results. This cannot be done with such
efficiency in a common program due to the fixed data
lengths that have to be used. For example, a series of 14
bits wide data have to be stored in 16 bits wide variables,
and their multiplication in variables of 32 bits, unless a
data resolution loss can be tolerated. On the other hand,
the hardware solution can take up 14 bits registers and
store the products in 28 bits structure, both if they are
send to general purpose memories or to registers inside
the FPGA. If we consider the fact that the input data
of the system are 32 bits wide, this characteristic gets
more importance, as 64 bit resolution in the software-
only program is more difficult to use, and it would be a
necessity since the first performed multiplication.

As it can be seen from table 2, the only operation
in the system that still needs to be optimized is the
CFO iterative section. This is expected as the hybrid
implementation in the SOPC also uses the sinf and
cosf functions from the Altera version of the math.h
library, that calculates the sine and cosine functions of
simple precision floating point inputs. To find a way to
accelerate these sine and cosine calculations, used for the
complex exponential operations, the use of look-up tables

and a CORDIC generator [8], are being tested. These
experiments consider the trade-offs between precision (so
the final estimate has enough accuracy), speed (for a
solution that can compete with the performance of the
other coprocessors) and occupied FPGA area.

6 Conclusions

An alternative solution that uses both a hardware
and a software approach was developed to allow the
implementation of a digital communications receiver
based on Data-dependent Superimposed Training. It was
shown that it is possible to analyze a software-only code
to detect the critical sections that can be translated into
faster and more accurate hardware coprocessors, which
can both be managed by the central microprocessor and
operate independently, accessing the memories in the
system without the necessity of interrupting the other
components. The problem of the complex exponentials
has yet to be solved. As a solution using mathematical
series is not suitable for FPGAs, a cordic generator and
a hybrid approach using small look-up tables is being
analyzed. In addition, to improve the performance of the
whole system, the use of a DMA module is also under
study, in order to reduce the time consumed in memory
accesses.

With this work it was possible to detect the most
problematic stage of a receiver based on DDST (the
Carry Frequency Offset Estimation). Nevertheless, the



use of FFTs and a look-up table / parallel / iterative
norm accelerators make the calculation of trigonometric
functions (sines and cosines) the only obstacle left in order
to obtain a practical system for DDST.

The hybrid software-hardware approach demonstrated
to be very versatile and flexible, allowing fast
implementation of several kinds of algorithms and
their fast modification, from a small change in the input
parameters values to the alteration of a full stage of the
process.
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